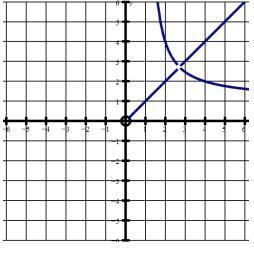
THE PERPLEXING PROBLEM OF $y^x = x^y$

If we type this equation into the Autograph program we get the following graph:



However this is not the whole story! If we examine the part of the graph which is the same as the line y = xwe can see that if we let y = x = bthen obviously $\mathbf{b}^{\mathbf{b}} \underline{\mathbf{always}}$ equals $\mathbf{b}^{\mathbf{b}}$ $\mathbf{y}^{x} = \mathbf{r}^{y}$

$$y' - x$$

$$1^{1} = 1^{1}$$

$$2^{2} = 2^{2}$$

$$3^{3} = 3^{3}$$
ALSO:
$$(\frac{1}{2})^{\frac{1}{2}} = (\frac{1}{2})^{\frac{1}{2}}$$

$$(\frac{1}{3})^{\frac{1}{3}} = (\frac{1}{3})^{\frac{1}{3}}$$

$$(\frac{5}{8})^{\frac{5}{8}} = (\frac{5}{8})^{\frac{5}{8}}$$

But the negative numbers also fit the equation $y^x = x^y$

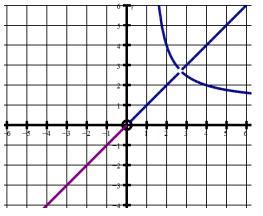
Suppose y = x = -1 then $(-1)^{-1} = \left(\frac{1}{-1}\right)^{+1} = -1$

Also, if
$$y = x = -2$$
 then $(-2)^{-2} = \left(\frac{1}{-2}\right)^{+2} = \frac{+1}{4}$

Also, if
$$y = x = -3$$
 then $(-3)^{-3} = \left(\frac{1}{-3}\right)^{+3} = -\frac{1}{27}$

Also, if
$$y = x = -\frac{1}{2}$$
 then $= \left(\frac{1}{-2}\right)^{-\frac{1}{2}} = (-2)^{\frac{1}{2}} = i\sqrt{2}$

It does not matter that this is an imaginary number! All that matters is that $y^x = x^y$ and in this case $= i\sqrt{2}$. This means we should extend the above graph as follows: (purple)



The case of y = x = 0 is a concern of course.

Mathematicians always "shy away" from things like this with a glib comment such as "this is not defined".

I think that this is fine in some cases like $\underline{0}$ which we say is "indeterminate".

If $a \times b = c \times d$ then $\frac{a}{c} = \frac{d}{b}$ Suppose a = 6, b = 0, c = 7 and d = 0So if $6 \times 0 = 7 \times 0$ then $\frac{6}{7} = \frac{0}{0}$ In other words $\frac{0}{0}$ can equal ANYTHING! (Just substitute any numbers for a and c) It is "indeterminate" as it is, BUT we can "determine" it. eg $\lim_{h \to 0} \frac{2xh + h^2}{h} = \frac{0}{0}$ if we just let h = 0BUT if we simplify it first: $\lim_{h \to 0} \frac{h(2x + h)}{h}$ (here we can cancel the h's because h is just a small value) $= \lim_{h \to 0} (2x + h)$ = 2x

HOWEVER I think 0^0 is a bit different.

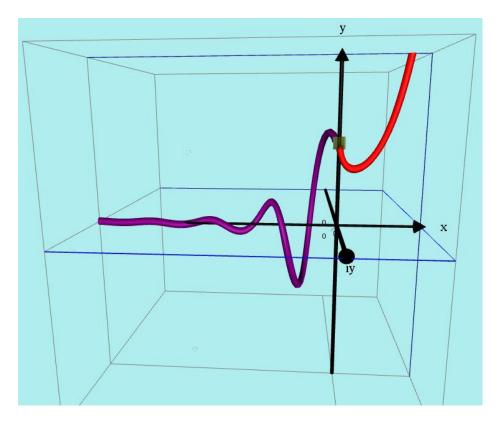
Consider $\lim_{b \to 0} b^0$ Obviously $(0.00000001)^0 = 1$ so $\lim_{b \to 0} b^0 \to 1$ Compare with $\lim_{b \to 0} 0^b$ Obviously $0^{0.00000001} = 0$ so $\lim_{b \to 0} 0^b \to 0$ Unlike the 0^0

I think that 0^0 can only be 0 or 1 and in this case I believe the sensible conclusion is that $0^0 \rightarrow 0$ thus completing the line y = x.

So instead of saying 0^0 is "NOT DEFINED" it seems sensible to simply "DEFINE" it as being equal to 0 in this particular case.

(But any purist is welcome to exclude this point if desired.) But if x = y = 0 then whatever 0^0 equals (either 0 or 1) then y^x still equals x^y . Incidentally for the graph of $y = x^x$ we have the same problem when x = 0 because $y = 0^0$ SEE <u>http://screencast.com/t/m4fmGwmkrT9</u>

The full graph of $y = x^x$ for REAL values of x (but allowing imaginary y values) is below:



Clearly $y = \lim_{x \to 0} x^x$ approaches y = 1 from the left and from the right.

So instead of saying 0^0 is "NOT DEFINED" it seems sensible to simply "DEFINE IT" as being equal to 1 in this particular case.

Please view these videos... $y = x^{x} 2020$

https://www.screencast.com/t/Vkz2HWA27

 $\mathbf{y} = \mathbf{x}^{\mathbf{x}}$ extended with new insight

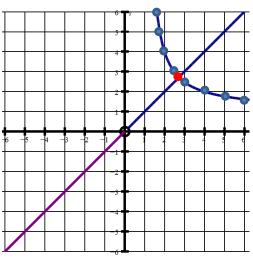
https://www.screencast.com/t/uo7NlUqH

The most interesting types of points on $y^x = x^y$ are those like (2, 4) and (4, 2) because $y^x = 4^2 = 16$ and $x^y = 2^4 = 16$

Suppose we choose y = 5, then we need to solve $5^x = x^5$ to find the x value. Either solving *graphically* by finding the intersection of $Y = 5^x$ and $Y = x^5$ or using the *equation solver* on a graphics calculator, we get: x = 1.764921915**TESTING:** $5^{1.764921915} = 17.1248777$ *and* $1.764921915^5 = 17.1248777$

Suppose we choose y = 6, then solving $6^x = x^6$ we get x = 1.624243846**TESTING:** $6^{1.624243846} = 18.36146714$ and $1.624243846^6 = 18.36146714$

Choosing y = 3 we get $x \approx 2.478$ so we can plot (2.478, 3) and (3, 2.478) Points like the above examples, produce the part of the curve which resembles a hyperbola. It is actually very close to $y - I = \underline{3}$



$$\frac{3}{x-1}$$

The two parts of the graph cross at x = 2.71828 and y = 2.71828which of course is x = y = e.

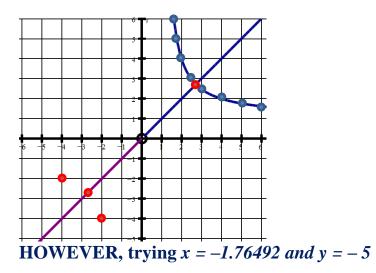
It occurred to me that I should also try some negative numbers. I will test x = -2, y = -4

TESTING:
$$(-2)^{-4} = (-\frac{1}{2})^4 = \frac{1}{16}$$

 $(-4)^{-2} = (-\frac{1}{4})^2 = \frac{1}{16}$

Also, considering x = y = -2.718Obviously $(-2.718)^{-2.718} = (-2.718)^{-2.718}$ The fact that $(-2.718)^{-2.718} = -0.04177 - 0.05114i$ which is a complex number, does not matter as long as it fits: $y^x = x^y$

So we can put the points (-2, -4) and (-4, -2) and (-2.718, -2.718) on the graph. See below:



 $(-1.76492)^{-5} = -0.05839457758 BUT (-5)^{-1.76492} = 0.04318 + i 0.03931$

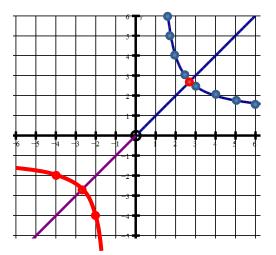
Disappointingly, this does not fit the equation $y^x = x^y$ because $y^x \neq x^y$

Similarly, trying x = -2.478 and y = -3

 $(-2.478)^{-3} = -0.0657 BUT (-3)^{-2.478} = 0.00454 - i 0.0656$ Also this does not fit the equation $y^x = x^y$ because $y^x \neq x^y$

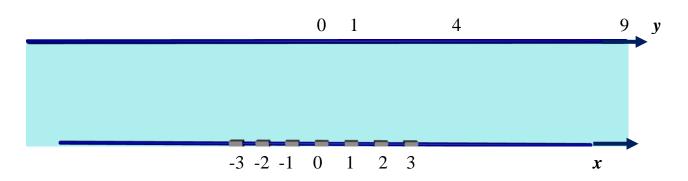
Obviously, I was <u>hoping</u> that the part of the curve resembling a hyperbola would be "reflected" or "rotated" to join up the points (-2, -4) and (-4, -2) and (-2.718, -2.718) in the 3rd quadrant.

See **RED CURVE** below:

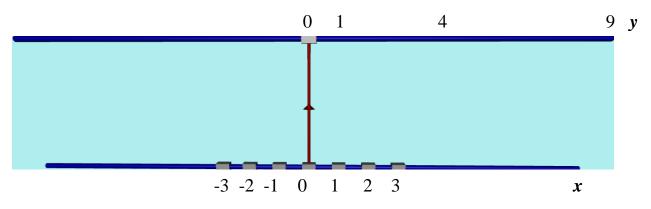


The following is a slight diversion but it does apply to this problem:

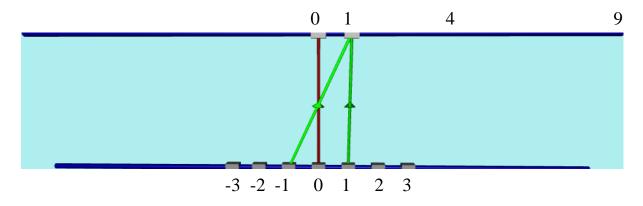
Think of $y = x^2$ as a process of **MAPPING** x values from an x axis onto y values on a y axis as shown below:



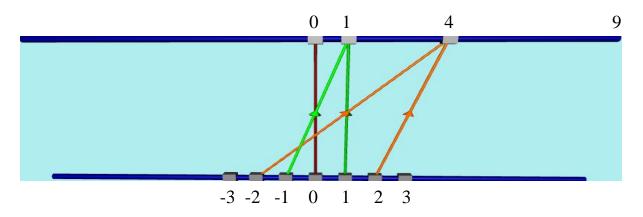
Firstly $0^2 = 0$ so we join $\mathbf{x} = 0$ to $\mathbf{y} = 0$



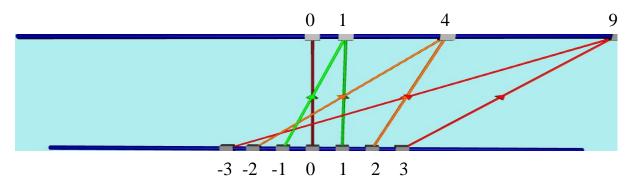
Now if $x = \pm 1$, y = +1



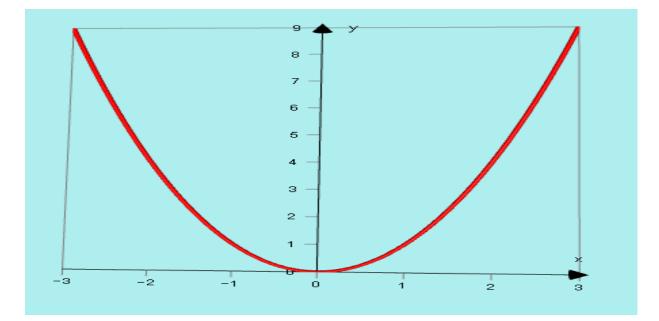
If $x = \pm 2$, y = +4



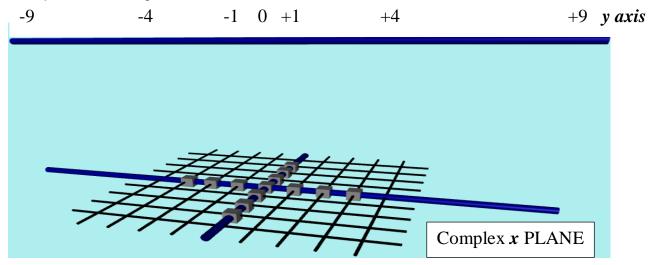
And if $x = \pm 3$, y = +9



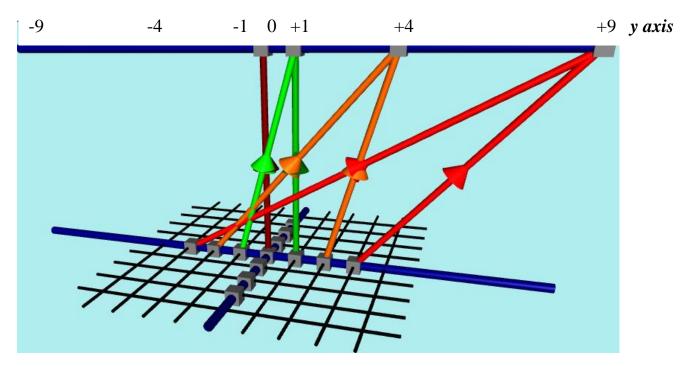
This of course produces the "normal" parabola $y = x^2$.



But now let us repeat this process of MAPPING x values from an x **PLANE** onto y values on a y **axis** as shown below:

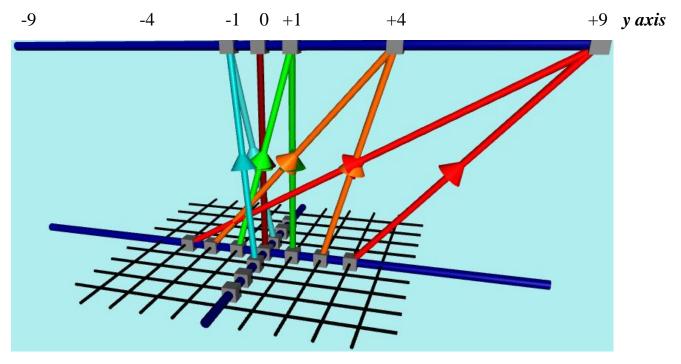


The diagram below shows $x = \pm 3$, y = +9 (*red*), $x = \pm 2$, y = +4 (*orange*) $x = \pm 1$, y = +1 (*green*) and x = 0, y = 0 (*brown*)

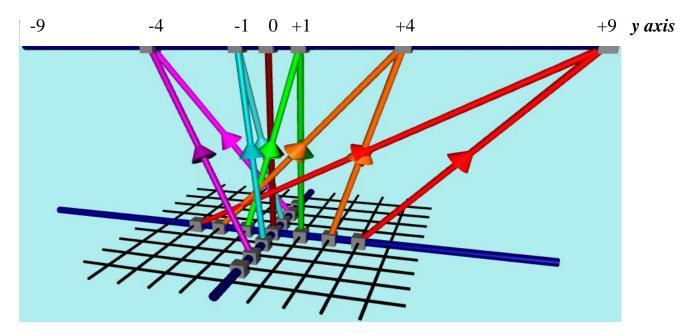


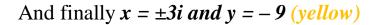
BUT NOW WE CAN ADD SOME IMAGINARY x VALUES WHICH PRODUCE REAL y VALUES. (This is the whole idea of Phantom Graphs!)

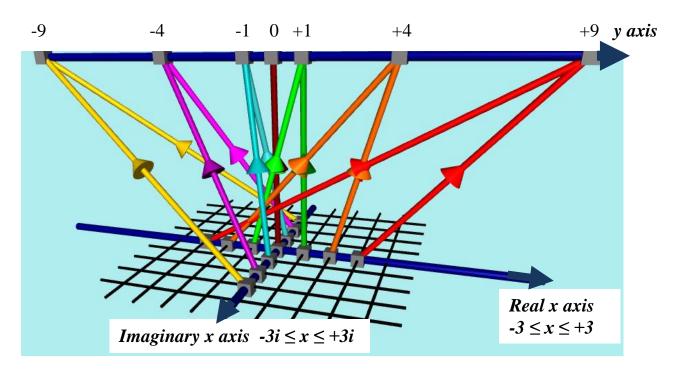
Here we add $x = \pm i$ *which map onto* y = -1 *(turquoise)*



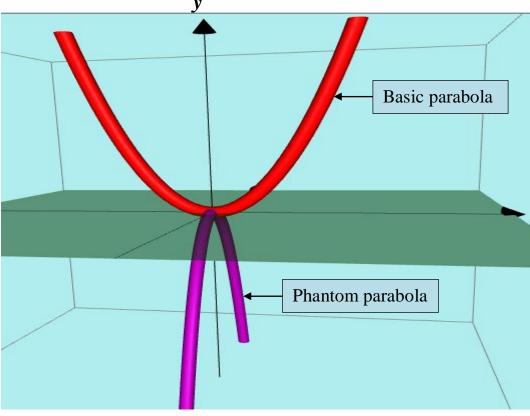
Now we add $x = \pm 2i$ and y = -4 (purple)







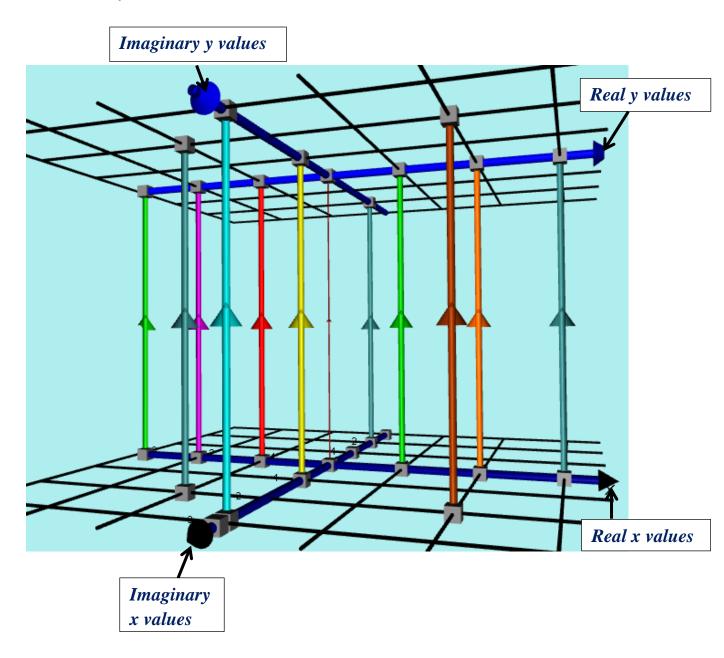
This of course produces the basic PHANTOM GRAPH of $y = x^2$ if we use the complex x plane and place the vertical y axis through it.

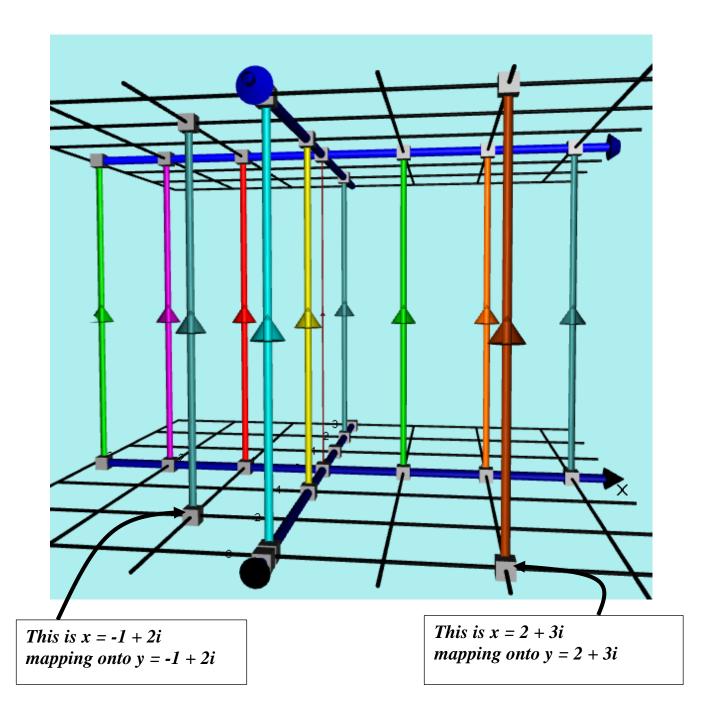


Please see video: Intro To Phantom Graphs https://www.screencast.com/t/6Owyrraog5t

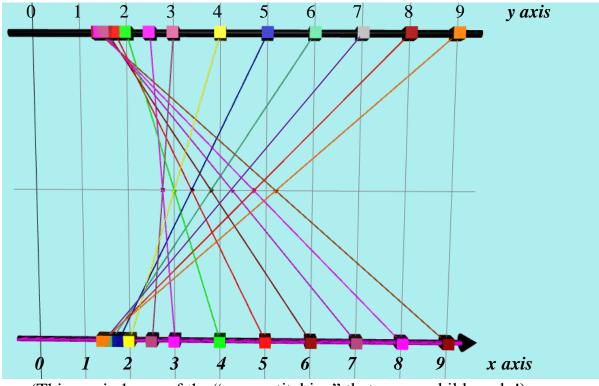
The whole point in the last 5 pages was to use the idea of mapping *complex x values* onto *complex y values* for the problem $y^x = x^y$

I established earlier that ALL real or imaginary values such as x = y = a + ibmust satisfy $y^x = x^y$ so the following diagram indicates this.

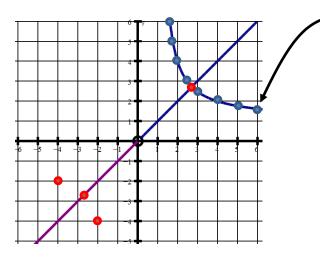




The special REAL points referred to earlier, such as the pairs: x = 2, y = 4 and x = 4, y = 2 x = 3, y = 2.48 and x = 2.48, y = 3 x = 5, y = 1.77 and x = 1.77, y = 5 x = 6, y = 1.62 and x = 1.62, y = 6 x = 7, y = 1.53 and x = 1.53, y = 7 x = 8, y = 1.46 and x = 1.46, y = 8 x = 9, y = 1.41 and x = 1.41, y = 9...can also be placed on a mapping of an x axis to a y axis.



(This reminds me of the "curve stitching" that young children do!)



The above diagram represents the points which form this curved section resembling a hyperbola.

SOME MORE SPECIAL REAL POINTS!

Earlier, I referred to the "nice" whole number points (2, 4) and (4, 2) which fit the equation $y^x = x^y$.

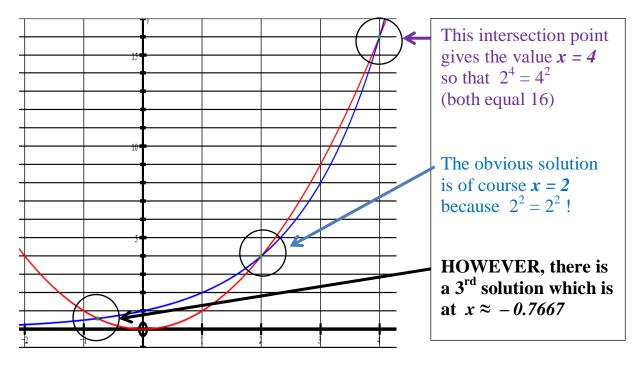
Suppose we were not aware of these solutions and we say to ourselves,

"If y = 2, *what would x be?"*

ie Find x if $2^x = x^2$

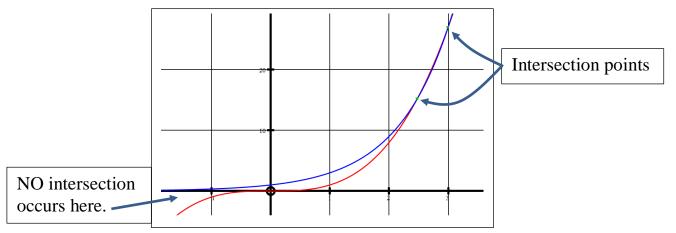
If we think of this as the intersection of two graphs we could proceed as follows:

Draw $Y = 2^x$ and $Y = x^2$ (I am using a capital Y because these Y values are not the same as the y values in the equation!)



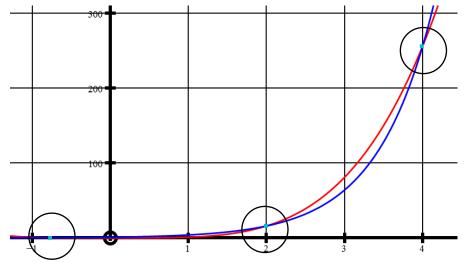
If we test this 3^{rd} solution we get $2^{(-0.7667)} = 0.5878$ and $(-0.7667)^2 = 0.5878$

This method will not produce 3 solutions for ODD y values such as y = 3 because the graphs $Y = 3^x$ and $Y = x^3$ only intersect TWICE.



We will only get solutions for EVEN y values 4^x , 6^x , 8^x ...

If we draw $Y = 4^x$ and $Y = x^4$ we get graphs which intersect 3 times.



The x values at the intersection points are x = 4, 2 and -0.7667 (again)

<u>CHECK:</u>	$4^{(-0.7667)} = 0.3455$
	$\left(-0.7667\right)^4 = 0.3455$

We can have: x = 4, y = -0.7667AND x = -0.7667, y = 4

If we draw $Y = 6^x$ and $Y = x^6$ we also get graphs which intersect 3 times. The x values are x = 6, 1.624 and -0.7899

<u>CHECK:</u> $6^{(-0.7899)} = 0.2429$ $(-0.7899)^6 = 0.2429$ We can have: x = 6, y = -0.7899and x = -0.7899, y = 6

If we draw $Y = 8^x$ and $Y = x^8$ we also get graphs which intersect 3 times. The x values are x = 8, 1.463 and -0.8101

<u>CHECK:</u> $8^{(-0.8101)} = 0.1855$ $(-0.8101)^8 = 0.1855$ We can have: x = 8, y = -0.8101and x = -0.8101, y = 8

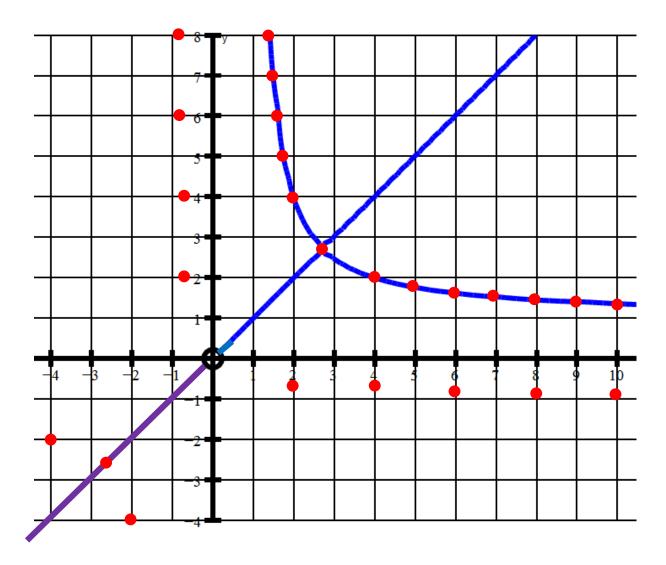
If we draw $Y = 10^x$ and $Y = x^{10}$ we also get graphs which intersect 3 times. The x values are x = 10, 1.371 and -0.8267

<u>CHECK:</u> $10^{(-0.8267)} = 0.1490$ $(-0.8267)^{10} = 0.1490$

We can have: x = 10, y = -0.8267and x = -0.8267, y = 10

These are all the solutions of $y^x = x^y$ I have found so far!

See below:



I have not YET found any MORE!!!

Apart from the infinite complex solutions of the form x = y = a + ib there are no actual "PHANTOM CURVES" because phantom graphs require A COMPLEX PLANE AND A REAL AXIS.

If the equation $y^x = x^y$ had any complex solutions such as x = a + bi and y = c + id then we would need a complex x plane and a complex y plane which would require 4 dimensional space. However, there may be some values a, b, c, d such that $(a + ib)^{(c + id)} = (c + id)^{(a + ib)}$ but I am still looking!

In 2017, I found a NEW set of points.....

<u>**NEW POINTS ON THE GRAPH** $y^x = x^y$ </u> Thanks to Marcelo Arruda from BRAZIL for the following ideas.

Using the basic form of De Moivre's theorem: if $z = rcis\theta = (\cos \theta + i \sin \theta)$ then: $z^n = r^n cisn\theta = r^n (\cos n\theta + i \sin n\theta)$, so if z is to be REAL then $\sin n\theta$ must be zero so $\theta = n\pi$ (ie multiples of π rads or 180°) Therefore if z is to be real then $z^n = r^n(\cos n\pi + i \sin n\pi)$

Then, considering two **negative** real numbers "*a*" and "*b*", (N.B. the modulus is always positive so the **modulus** of "a" is "-a") then we can write:

$$z^{n} = r^{n} (\cos n\theta + i \sin n\theta)$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$a^{b} = (-a)^{b} (\cos b\pi + i \sin b\pi) = ((-a)^{-b})^{-1} (\cos b\pi + i \sin b\pi)$$

$$b^{a} = (-b)^{a} (\cos a\pi + i \sin a\pi) = ((-b)^{-a})^{-1} (\cos a\pi + i \sin a\pi)$$

Now we will look at the two parts of these expressions and analyse them individually:

 $a^{b} = ((-a)^{-b})^{-1}(\cos b\pi + i \sin b\pi)$ $b^{a} = ((-b)^{-a})^{-1}(\cos a\pi + i \sin a\pi)$

So, if the **positive** numbers x = -a and y = -b satisfy $x^y = y^x$, then the **red** parts of above equations show this result and must be equal to each other. (ie The equation: $x^{y} = v^{x}$ becomes $(-a)^{-b} = (-b)^{-a}$)

The **blue** parts will be equal to each other if: $\cos b\pi = \cos a\pi$ and $\sin b\pi = \sin a\pi$, which means $b\pi = a\pi \pm 2k\pi$ and therefore $b = a \pm 2k$.(where k is any whole number)

Recall a and b are negative so multiplying that last equality by -1 we get $-b = -a \pm 2k$ (remember "-b" and "-a" are positive numbers!)

So, if we can find pairs of **positive numbers** x and y which differ by **2**k and which obey $x^y = y^x$, then their opposite negative numbers -x and -y will also satisfy the equation $(-x)^{(-y)} = (-y)^{(-x)}$. The simplest example of this is when x = 4 and y = 2. These numbers differ by 2 and they satisfy $4^2 = 2^4$ so this means that the **opposites** x = -4 and y = -2 will also satisfy the equation: $x^y = y^x$ because $(-4)^{(-2)} = (-2)^{(-4)}$

To find such numbers, we let y = x - 2kand solve $x^{x-2k} = (x - 2k)^x$ -----EQU 1 for k = 1, 2, 3 and so on.

Examples:

If $\mathbf{k} = \mathbf{1}$, Equ. 1 becomes $x^{x-2} = (x-2)^x$, whose solution is x = 4. (Found by drawing the graphs $f(x) = x^{x-2}$ and $f(x) = (x-2)^x$ using the AUTOGRAPH program and finding the intersection point.) This leads to x = 4 and y = x - 2 = 2. The positive solutions are +4 and +2 and therefore, -4 and -2 will also satisfy $x^y = y^x$ (In each case, the x and y values can be swapped to produce x = -2, y = -4) (We already knew these solutions.)

Now, let's explore some new solutions using y = x - 2k:

If $\mathbf{k} = \mathbf{2}$ (so the *x* and *y* differ by 4) then Equ 1 becomes $x^{x-4} = (x-4)^x$ whose solution is x = 5.6647143 (from Autograph) This leads to y = x - 4 = 1.6647143, so x = -5.6647143 and y = -1.6647143 will be solutions too. Testing: $(-5.6647143)^{-1.6647143} = 0.0275738 + 0.048443i$ $(-1.6647143)^{-5.6647143} = 0.0275738 + 0.048443i$ (Again we can say x = -1.6647143 and y = -5.6647143 are solutions) If $\mathbf{k} = \mathbf{3}$ (so the *x* and *y* differ by 6) then Equ 1 becomes $x^{x-6} = (x-6)^x$, whose solution is x = 7.4941717This leads to y = x - 6 = 1.4941717, so x = -7.4941717 and y = -1.4941717 will be solutions too. Testing: $(-7.4941717)^{-1.4941717} = -0.000903 + 0.049311i$ $(-1.4941717)^{-7.4941717} = -0.000903 + 0.049311i$ (Again x = -1.4941717 and y = -7.4941717 are solutions too.) If $\mathbf{k} = \mathbf{4}$ (so the x and y differ by 8) then Equ 1 becomes $x^{x-8} = (x-8)^x$, whose solution is x = 9.3944668This leads to y = x - 8 = 1.3944668, so x = -9.3944668 and y = -1.3944668 will be solutions too. Testing: $(-9.3944668)^{-1.3944668} = -0.014319 + 0.041595i$ $(-1.3944668)^{-9.3944668} = -0.014319 + 0.041595i$ (Again x = -1.3944668 and y = -9.3944668 are solutions too.) If $\mathbf{k} = \mathbf{5}$ (so the x and y differ by 10) then Equ 1 becomes $x^{x-10} = (x - 10)^x$, whose solution is x = 11.33This leads to y = x - 10 = 1.33so x = -11.33 and y = -1.33 will be solutions too. Testing: $(-11.33)^{-1.33} = -0.020 + 0.0340i$ $(-1.33)^{-11.33} = -0.020 + 0.0340i$ (Again x = -1.33 and y = -11.33 are solutions too.)

We can continue this as far as we like, but the pattern is better seen graphically.

The intersection points (•) of the "hyperbola-like" curve in the 1st quadrant, of positive x and y solutions of $x^y = y^x$, with the lines y = x, $y = x \pm 2$, $y = x \pm 4$, $y = x \pm 6$ etc., are reflected in the line y = -x so that they re-appear in the 3^{rd} quadrant but with the negative versions of the coordinates.

We already knew the points (-4, -2), (-2.718, -2.718) and (-2, -4). The solutions to $x^y = y^x$ previously known are **all the points on the purple line** y = x, **all the points on the blue "hyperbola-like curve**" and all the points denoted by red dots (•)

The LIGHT BLUE points (•) are the new ones. (Thanks to Marcelo Arruda from BRAZIL)

